
Security Assessment

StarChain - Token
CertiK Assessed on Sept 18th, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

1 Minor 1 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

0 Informational

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY STARCHAIN - TOKEN

CertiK Assessed on Sept 18th, 2024

StarChain - Token

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES
ERC-20

ECOSYSTEM
Ethereum (ETH)

METHODS
Formal Verification, Manual Review, Static Analysis

LANGUAGE
Solidity

TIMELINE
Delivered on 09/18/2024

KEY COMPONENTS
N/A

CODEBASE
https://github.com/starchaindev/strc-token

View All in Codebase Page

COMMITS
d71c7912292a3e86a9ce5decf0954572a01df3e1

9b6e76710bf951fd81e816693a7607313af11276

bdff55f292ca0c714519c0597064921dbb52eab1

View All in Codebase Page

2
Total Findings

1
Resolved

1
Mitigated

0
Partially Resolved

0
Acknowledged

0
Declined

TABLE OF CONTENTS STARCHAIN - TOKEN

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

TTB-05 : Initial Token Distribution

TTB-03 : State Variable Shadowing

Optimizations

TTB-04 : Variables That Could Be Declared as Immutable

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS STARCHAIN - TOKEN

CODEBASE STARCHAIN - TOKEN

Repository

https://github.com/starchaindev/strc-token

Commit

d71c7912292a3e86a9ce5decf0954572a01df3e1

9b6e76710bf951fd81e816693a7607313af11276

bdff55f292ca0c714519c0597064921dbb52eab1

56b5052e96619c5ad1e6d5b00f30ded5223779cc

CODEBASE STARCHAIN - TOKEN

AUDIT SCOPE STARCHAIN - TOKEN

1 file audited 1 file with Acknowledged findings

ID Repo File SHA256 Checksum

starchaindev
TTB

/strc-token
Token/contracts/Token.sol

107880045901eb5dd0fe894a363d644744142

778ceceb471144cd85303396737

AUDIT SCOPE STARCHAIN - TOKEN

APPROACH & METHODS STARCHAIN - TOKEN

This report has been prepared for StarChain to discover issues and vulnerabilities in the source code of the StarChain -

Token project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS STARCHAIN - TOKEN

FINDINGS STARCHAIN - TOKEN

This report has been prepared to discover issues and vulnerabilities for StarChain - Token. Through this audit, we have

uncovered 2 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

TTB-05 Centralization Major Mitigated

TTB-03 Sttate Variable Shadowing Coding Style Minor Resolved

FINDINGS STARCHAIN - TOKEN

2
Total Findings

0
Critical

1
Major

0
Medium

1
Minor

0
Informational

Initial Token Distribution

TTB-05 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major Token/contracts/Token.sol (base): 364~365, 413~414, 493~494 Mitigated

Description

All of the 5 *10 ** 8 * 10 ** 18 STRC tokens are sent to the contract deployer or one or several externally-owned

account (EOA) addresses. This is a centralization risk because the deployer or the owner(s) of the EOAs can distribute

tokens without obtaining the consensus of the community. Any compromise to these addresses may allow a hacker to steal

and sell tokens on the market, resulting in severe damage to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

[CertiK, 07/17/2024] : The team shared token distribution information in https://github.com/paris-florian/strc-

token/blob/9b6e76710bf951fd81e816693a7607313af11276/StarChain%20Token%20Distribution%20Information.pdf.

The Gnosis Safe multisig wallet deployment proxy is

https://polygonscan.com/address/0x36c4cfDd2E8ea7c64e59B65320842aCe6e5EdE2F, and its implementation deployment

is https://polygonscan.com/address/0x3E5c63644E683549055b9Be8653de26E0B4CD36E

Any transaction requires the confirmation of 5 out of 6 following signers:

0xE06735C9ab25C8d0d1682B56bF273D087B413CDC

0xb7CE491C60FfAAC51802121C2011140edC34DD7D

0x64353ABB04F94a1D27E08824039d4aF6fB2F240B

0x92dDAB647045ff980C034a257112DC83147bfD2c

0xB5D99434E6D16eB767650FD504e6876eF2bB4E64

0x51d5A5D604fb1c4Ba58A2b43c986968207817B6B

The finding status is marked Acknowledge according to the fact:

TTB-05 STARCHAIN - TOKEN

1. The multisig wallet address does not hold the undistributed STRC tokens.

The finding will be revisited once the team provides the token deployment address and the transaction that mints initial

tokens to the multisig wallet address outlined in the recommendation section.

[StarChain, 09/12/2024] : Token Distribution to multiple multi-sig wallets (per tokenomics allocation) will now happen on

mint

So "Token Distribution risks exist if tokens are distributed to a single party (whale), this could lead to centralization risk as the

deployer can then distribute tokens without obtaining the consensus of the community." no longer applies

[CertiK, 09/12/2024] : according to the modification made in the https://github.com/paris-florian/strc-

token/blob/bdff55f292ca0c714519c0597064921dbb52eab1/Token/contracts/Token.sol, a fraction of the _tTotal tokens, in

total of 5 * 100000 * 10 ** 18 , will be distributed to following addresses.

Presale 0x601f414E25840125A84988039E542A0840c6B7Da receives 175 * 100000 * 10 ** 18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0x67C794b610Eafe81c0f7A79c9d7DEaABC99fD403

0xB0B4a0dca9283e5C749d2E0c3f084D9d5e2a7C15

0xdE23463ae5583ac78ed1d4f725b0454BB2D7eE56

Contribution Incentives (Rewards) 0x10250D559FEfc8A56649C7E25363f5fe814e671b receives 75 * 100000 * 10

** 18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0x212808A6690A90Bd50F4BF6DA635Fd7F6F4af886

0xEb2960B9d70BC30ea02a1f5C02c70722eB9cD0D5

0xeF600838D5A0135Af1163c219af973bc4381102e

Marketing and Development 0x06E08944C1F423eFf5B0F71158DF3144c94ACBb5 receives 70 * 100000 * 10 **

18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0xe47b9bD4E5CD5674F5874c01125d931CFa600a4A

0xBD47Fb46C06AC992Ced602c0Ddd08eAc6f0230F3

TTB-05 STARCHAIN - TOKEN

0x1e1133949Ee5e03533736090e8fAB9AA3f880f01

Treasury 0x0EF7D59F319999F978956c3bD906e026F74d355D receives 70 * 100000 * 10 ** 18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0xAC10dbB46ea84BbB55615aa709aE426A01c4A0f3

0xDBEdfceE7622f294720C4F1b9BD5B660D78c89F5

0x4f89c5Add839D13194bde16c476B4EbE3d93Ee07

DEX Liquidity 0x376ff99bbfe42432d5B53E3Cf9D0C0826D85F345 receives 50 * 100000 * 10 ** 18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0x8D08e9Ea4CA302ceDE4591094A94369E22ADeb90

0x70D72D069864398E6CAAb15E0313d37B2A26fc43

0xE7BD8B23d07cc16Def7d729624490d35CB5Cddc6

Team and Advisors 0xe6775c00BC6F06Cd15Ea90aF581C095306fE8C32 receives 35 * 100000 * 10 ** 18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0x746f3d5609ad553827911c375a70688BC89E70D3

0x87F81d4De49d33d5fe4554743aAd736CCfc9D18B

0x2d8f0193AC951bb95eaabcCf5f30ae37B3065f75

CEX Listings 0x2c84f0384138B3C1dD8ef1C8E2cd10B4b331f03a receives 25 * 100000 * 10 ** 18 tokens:

The address is a Gnosis multi-signature address with transactions that need the signature of 2 out of 3

of the following addresses:

0xFFbb98C403bCb82b9Aa8a52Ff9F6dFA90382Aa52

0x64D6b059329F1d2D5B53eceB4ac0CFf4C88968A1

0x17D17C286666F65935ce8D4a649557C4C7edC3Fb

The token distribution information is shared at https://github.com/paris-florian/strc-

token/blob/bdff55f292ca0c714519c0597064921dbb52eab1/StarChain%20Token%20Distribution%20Information.md.

TTB-05 STARCHAIN - TOKEN

[CertiK, 09/18/2024] : according to the modification made in the https://github.com/paris-florian/strc-

token/tree/56b5052e96619c5ad1e6d5b00f30ded5223779cc/Token/contracts/Token.sol, a fraction of the _tTotal tokens, in

total of 50000000 * (10 ** uint256(18)) , will be distributed to above addresses.

TTB-05 STARCHAIN - TOKEN

TTB-03 STATE VARIABLE SHADOWING

Category Severity Location Status

Coding Style Minor Token/contracts/Token.sol (base): 171, 490 Resolved

Description

A state variable in a derived contract is shadowing a similarly named component in a parent contract. This means that when

the derived contract accesses the state variable by its name, it will use the one defined in the derived contract, not the one in

the parent contract.

Variable _totalSupply in StarChainToken shadows the variable _totalSupply in ERC20 .

490 uint256 _totalSupply ;

171 uint256 private _totalSupply;

Recommendation

It is suggested to remove or rename the state variable that shadows another definition.

Alleviation

[CertiK, 07/17/2024] : The team heeded the advice and resolved the finding in the commit

bd10c54789dbbd6f432a60924d6008aac0a844e9

TTB-03 STARCHAIN - TOKEN

OPTIMIZATIONS STARCHAIN - TOKEN

ID Title Category Severity Status

TTB-04 Variables That Could Be Declared As Immutable Gas Optimization Optimization Acknowledged

OPTIMIZATIONS STARCHAIN - TOKEN

TTB-04 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization Token/contracts/Token.sol (base): 490 Acknowledged

Description

The linked variable, _totalSupply , assigned in the constructor can be declared as immutable . Immutable state variable

can be assigned during contract creation but will remain constant throughout the lifetime of a deployed contract. A big

advantage of immutable variable is that reading them is significantly cheaper than reading from regular state variable since

they will not be stored in storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[CertiK, 09/12/2024] : The _totalSupply variable is renamed to _tTotal in the commit

bdff55f292ca0c714519c0597064921dbb52eab1. The finding is marked as Acknowledged as _tTotal can be declared as

immutable to optimize the code

TTB-04 STARCHAIN - TOKEN

FORMAL VERIFICATION STARCHAIN - TOKEN

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Transfers

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-allowance-correct-value allowance Returns Correct Value

erc20-approve-never-return-false approve Never Returns false

FORMAL VERIFICATION STARCHAIN - TOKEN

Property Name Title

erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-allowance-succeed-always allowance Always Succeeds

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-transferfrom-revert-zero-argument transferFrom Fails for Transfers with Zero Address Arguments

erc20-transfer-never-return-false transfer Never Returns false

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract ERC20 (Token/contracts/Token.sol) In Commit
d71c7912292a3e86a9ce5decf0954572a01df3e1

FORMAL VERIFICATION STARCHAIN - TOKEN

Verification of ERC-20 Compliance

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-correct-amount True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-false True

erc20-transferfrom-fail-exceed-balance True

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-correct-amount True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-never-return-false True

erc20-transfer-false True

erc20-transfer-revert-zero True

FORMAL VERIFICATION STARCHAIN - TOKEN

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-false True

erc20-approve-revert-zero True

erc20-approve-never-return-false True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-correct-value True

erc20-allowance-succeed-always True

erc20-allowance-change-state True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

erc20-totalsupply-succeed-always True

FORMAL VERIFICATION STARCHAIN - TOKEN

Detailed Results For Contract StarChainToken (Token/contracts/Token.sol) In Commit
d71c7912292a3e86a9ce5decf0954572a01df3e1

Verification of ERC-20 Compliance

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

erc20-totalsupply-succeed-always True

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-false True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow True

FORMAL VERIFICATION STARCHAIN - TOKEN

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-exceed-balance True

erc20-transfer-correct-amount True

erc20-transfer-never-return-false True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-revert-zero True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-change-state True

erc20-balanceof-correct-value True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION STARCHAIN - TOKEN

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-change-state True

erc20-allowance-correct-value True

FORMAL VERIFICATION STARCHAIN - TOKEN

APPENDIX STARCHAIN - TOKEN

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

APPENDIX STARCHAIN - TOKEN

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) - \old(amount)

 || (allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +

amount)

 && balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);

 also

requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

APPENDIX STARCHAIN - TOKEN

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-fail-recipient-overflow

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount > type(uint256).max;

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

APPENDIX STARCHAIN - TOKEN

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;

also

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

 also

requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

If the transfer function in contract ERC20 fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

APPENDIX STARCHAIN - TOKEN

erc20-transfer-false

If the transfer function in contract StarChainToken fails by returning false , it must undo all state changes it incurred

before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-recipient-overflow

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount > type(uint256).max;

ensures !\result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract StarChainToken must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-change-state

APPENDIX STARCHAIN - TOKEN

The totalSupply function in contract ERC20 must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract ERC20.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract StarChainToken.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function approve

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

APPENDIX STARCHAIN - TOKEN

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

requires spender != address(0);

ensures \result;

reverts_only_when false;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

APPENDIX STARCHAIN - TOKEN

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function balanceOf

erc20-balanceof-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX STARCHAIN - TOKEN

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER STARCHAIN - TOKEN

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER STARCHAIN - TOKEN

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

StarChain - Token Security Assessment CertiK Assessed on Sept 18th, 2024 Copyright © CertiK

